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= Research question:
To what extent does anthropogenic forcing increase the frequency, intensity, and
duration of extreme heat events?

= Method: Compare CMIP6 climate simulations with and without anthropogenic
forcing using space-time extreme value theory.

= What do we focus on?
Quantifying changes in heat wave characteristics over Europe.

Datasets

= Observational data: Daily maximum temperature from the Berkeley Earth dataset |2]
(1°x1° resolution, 1880-present), combining over 30000 weather stations with spatial
reconstruction for exploratory analysis and clustering.

= Model simulations: CMIPé climate models under historical (with human forcing,
Factual) and natural (without human forcing, Counterfactual) runs (1850-2020).

Clustering region

= How: Partitioning around medoids.
= Distance based on pairwise tail dependence coefficient [3,4]:
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Figure 1. Cluster map of summer (JJA) temperature anomalies from the Berkeley dataset. The seven

spatial clusters were identified using the partitioning around medoids (PAM) algorithm applied to a
distance based on pairwise tail dependence.

Marginal model

The marginal distribution of each location¢ € {1,...,n,} ina given cluster j € {1,...,7}
Is modelled with a nonstationary generalized extreme value distribution:
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where GMST(t) is the annual Global Mean Surface Temperature anomaly, ENSO3.4(t) is

the July-centered 5-month running mean Nino 3.4 anomaly, and NAO(t) is the standard-
ized summer (JJA) North Atlantic Oscillation index.

We define the parameter vector for location ¢ in cluster 5 as follows:
Bi ;= (H0ijs iy H2igs B34, 0igr &ij) € R
We penalize variation across neighboring locations. Let «,,; € R™ be the vector of the

p-th parameter across all n; locations in cluster j.

We estimate the parameters by minimizing a penalized negative log-likelihood [5,6,7]:
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where §,; € R is an adjacency matrix:

M| ifl=k
s;. = < —1 ifl and k are neighbors

0 otherwise

and N, denotes the set of neighbors of location [.
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Spatio-temporal modeling

We model extremal dependence via the copula of a latent process [8,2] that is applied
on all daily temperatures:

Z(s,t) = R(t)°’W(s,t)™°, §¢€]0,1]

= R(t): IID standard unit-Pareto
" Wis, 1) = 1-@(%*(5,75))

= W*(s, t): zero-mean Gaussian field with separable covariance
C((Sla tq)7 (Sk7 t?“)) — OS(Sla Sk>0t(tQ7 t?“)

. space-time process

Spatial covariance (Spatially nonstationary, anisotropic) [10]:
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= A: anisotropy matrix

Temporal covariance [11]:

Ct(tqv t?“) —

= Likelihood-free parameter estimation with neural Bayes estimators [12].

Preliminary results on CanESM5 model [13] cluster 1
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(b) Return levels of heat wave number during a
summer Cluster 1.

(a) Empirical extremogram at lag O as a function of
spatial distance Cluster 1. Results from historical
data and simulations of the Z(s, t) process are
shown for comparison.
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(c) Return levels of heat wave duration Cluster 1. (d) Return levels of heat wave intensity Cluster 1.

Figure 2. Preliminary results on CanESM5 model cluster 1. Historical (Factual) and natural
(Counterfactual) scenarios are shown for comparison.
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